Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

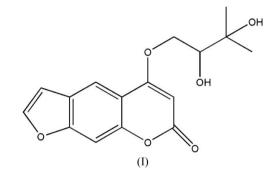
Ke-Zhong Deng, Wen-Yuan Gao,* Ying Xiong, Hai-Xia Chen and Shu-Jun Wang

School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: dkezhong@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.003 \text{ Å}$ Disorder in main residue R factor = 0.043 wR factor = 0.113 Data-to-parameter ratio = 12.1


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the title compound, $C_{16}H_{16}O_6$, the furan, benzene and pyrone rings are almost coplanar. The crystal structure is stabilized by intermolecular $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonding.

5-(2,3-Dihydroxy-3-methylbutoxy)-7H-

furo[3,2-g]chromen-7-one

Comment

The title compound (common name oxypeucedanin hydrate), (I), was isolated from a Chinese medicine, Radix Angelicae dahuricae (the root of *Angelica Dahurica*). Pharmacology experiments have shown that oxypeucedanin hydrate inhibits histamine release (Kimura *et al.*, 1997). We report here the crystal structure of (I).

The molecular structure of (I) is shown in Fig. 1. The furan, benzene and pyrone rings are essentially coplanar, with a maximum deviation of 0.0174 (3) Å for atom C1. The dihedral angle between the coumarin unit and the furan ring is $1.1 (2)^{\circ}$. Adjacent molecules are linked *via* classical O-H···O hydrogen bonding and weak C-H···O hydrogen bonding (Table 1).

Experimental

The dried root of *Angelica Dahurica* was extracted with ethanol and fractionated into EtOAc- and water-soluble fractions. The EtOAc-soluble fraction was subjected to silica gel column chromatography using a CHCl₃–MeOH gradient (1:0 to 0:1) to obtain oxypeucedanin hydrate, which was further purified by preparative thin-layer chromatography. Single crystals of (I) were obtained by slow evaporation of an ethanol solution.

```
Crystal data

C_{16}H_{16}O_6

M_r = 304.29

Monoclinic, P2_1/c

a = 9.1301 (19) Å

b = 10.015 (2) Å

c = 16.003 (3) Å

\beta = 98.824 (4)°

V = 1445.9 (5) Å<sup>3</sup>
```

Z = 4 $D_x = 1.398 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 293 (2) KBlock, colourless $0.24 \times 0.22 \times 0.20 \text{ mm}$ Received 12 December 2006 Accepted 16 January 2007

All rights reserved

© 2007 International Union of Crystallography

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: none 7192 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.113$ S = 1.012549 reflections 210 parameters H-atom parameters constrained

Table 1

Hydrogen-bond geometry (Å, °).

	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C10-H10\cdots O3^{iii}$ 0.93 2.58 3.479 (3) 162	$O6-H6A\cdots O3^{ii}$	0.87	1.97	2.819 (3)	167

2549 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0468P)^2]$

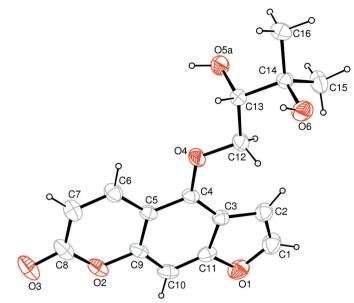
where $P = (F_0^2 + 2F_c^2)/3$

+ 0.2072P]

 $\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.14 \text{ e} \text{ Å}^{-3}$

 $R_{\rm int} = 0.036$


 $\theta_{\rm max} = 25.0^{\circ}$

1511 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) -x + 1, -y + 1, -z + 2; (iii) $-x + 2, y + \frac{1}{2}, -z + \frac{5}{2}$.

The O5 hydroxy group is disordered over two positions; occupancies were refined and converged to 0.594 (3) and 0.406 (3), and were fixed at 0.6 and 0.4 in the final cycles of refinement. H atoms on O atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, with $U_{\rm iso}(\rm H) = 1.5U_{eq}(\rm O)$. Methyl H atoms were placed in calculated positions with $C-\rm H = 0.96$ Å and torsion angles were refined to fit the electron density, $U_{\rm iso}(\rm H) = 1.5U_{eq}(\rm C)$. Other H atoms were placed in calculated positions, with $C-\rm H = 0.93$ (aromatic), 0.97 (methylene) or 0.98 Å (methine), and refined in riding mode, with $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C)$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve

Figure 1

The molecular structure of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). The minor disordered component has been omitted for clarity.

structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

References

- Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kimura, Y., Okuda, H. & Baba, K. (1997). J. Nat. Prod. 60, 249-251.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.